Publications

 

Peer-Reviewed Articles

2017

Andresen, M.A., Linning, S.J., and Malleson, N. (2016). Crime at places and spatial concentrations: exploring the spatial stability of property crime in Vancouver BC, 2003-2013. Journal of Quantitative Criminology,  33(2), 255 – 275. DOI: 10.1007/s10940-016-9295-8

2016

Ward, J., A. Evans, N. Malleson (2016) Dynamic calibration of agent-based models using data assimilation. Royal Society Open Science. 3:150703. (open access) DOI: https://dx.doi.org/10.1098/rsos.150703

Malleson, N., and Andresen, M.A. (2016) Exploring the impact of ambient population measures on London crime hotspots. Journal of Criminal Justice 46 pp 52-63 [DOI: 10.1016/j.jcrimjus.2016.03.002] (open access)

 

Heppenstall, A., N. Malleson and A. Crooks (2016) ‘Space, the Final Frontier’: How Good are Agent-Based Models at Simulating Individuals and Space in Cities? Systems 4(1) 9 [DOI:10.3390/systems4010009]

2015

Malleson, N. and M.A. Andresen (2015a) Spatio-temporal crime hotspots and the ambient population. Crime Science 4(10). [URL (open access)] [DOI:10.1186/s40163-015-0023-8] [URL (white rose repository]

Andresen, M.A., and N. Malleson (2015). Intra-week spatial-temporal patterns of crime. Crime Science. 4(12) [URL (open access)] [URL (white rose repository]

Malleson, N. and M. Andresen (2015b) The impact of using social media data in crime rate calculations: shifting hot spots and changing spatial patterns. Cartography and Geographic Information Science : 42(2) 112-121 [PDF] [DOI: 10.1080/15230406.2014.905756]

2014

Hirschfield, A., M. Birkin, C. Brunsdon, N. Malleson and A. Newton (2014). How Places Influence Crime: The Impact of Surrounding Areas on Neighbourhood Burglary Rates in a British City. Urban Studies 1(5) 1057-1072 DOI: 10.1177/0042098013492232

Andresen, M.A. and N. Malleson (2014). Police Foot Patrol and Crime Displacement: A Local Analysis. Journal of Contemporary Criminal Justice 30(2) 186–199. doi:10.1177/1043986214525076. [URL]

Jenkins, K., J. Hall, V. Glenis, C. Kilsby, M. McCarthy, C. Goodess, D. Smith, N. Malleson, M. Birkin (2014) Probabilistic spatial risk assessment of heat impacts and adaptations for London. Climatic Change 124: 105-117. doi:10.1007/s10584-014-1105-4 [URL]

Birkin, M., Harland, K., Malleson, N., Cross, P., Clarke, M. (2014) An Examination of Personal Mobility Patterns in Space and Time Using Twitter. International Journal of Agricultural and Environmental Information Systems 5, 55–72. doi:10.4018/ijaeis.2014070104 [pdf]

2013

Birkin, M., K. Harland and N. Malleson (2013) The Classification of Space-Time Behaviour Patterns in a British City from Crowd-Sourced Data. In Murgante, B., Misra, S., Carlini, M., Torre, C., Nguyen, Hong-Quang, Taniar, D., Apduhan, B. O. and Gervasi, O. (Eds) Computational Science and Its Applications – Lecture Notes in Computer Science 7974 179-192 [URL] [pdf]

Malleson, N., A. Evans, A. Heppenstall, L. See (2013) The Leeds Burglary Simulator. Informatica e diritto special issue: Law and Computational Social Science 1 211-222

Andresen, M.A. and N. Malleson (2013). Crime seasonality and its variations across space. Applied Geography, 43 25–35. [URL]

Malleson, N., A. Heppenstall, L. See, A. Evans (2013) Using an agent-based crime simulation to predict the effects of urban regeneration on individual household burglary risk. Environment and Planning B: Planning and Design 40 405-426. doi:10.1068/b38057 [download]

2012

Malleson, N. and M. Birkin (2012).  Analysis of crime patterns through the integration of an agent-based model and a population microsimulation. Computers, Environment and Urban Systems 36(6) 551–561. [URL] [download]

Malleson, N., L. See, A. Evans, and A. Heppenstall (2012). Implementing comprehensive offender behaviour in a realistic agent-based model of burglary. SIMULATION 88(1) 50-71 . [URL] [download]

2011

Birkin, M., N. Malleson, Hudson-Smith, A., Gray, S. Milton, R. (2011). Calibration of a spatial simulation model with volunteered geographical information. International Journal of Geographical Information Science 25(8) 1221-1239. [URL] [download]

Malleson, N. and Birkin, M. (2011). Towards victim-oriented crime modelling in a social science e-infrastructure. Philosophical Transactions of the Royal Society A 369(1949) 3353-3371. [URL] [download]

Andresen, M.A. and N. Malleson (2011). Testing the stability of crime patterns: implications for theory and policy.  Journal of Research in Crime and Delinquency, 48(1) 58-82 [URL]

2010

Malleson, N., A. Heppenstall and L. See (2010). Crime reduction through simulation: An agent-based model of burglary. Computers, Environment and Urban Systems 31(3) 236-250. [URL] [download]

2009

Malleson, N., A. Evans and T. Jenkins (2009). An agent-based model of Burglary. Environment and Planning B: Planning and Design 36 1103-1123. [URL].

Malleson, N. and P. L. Brantigham (2009). Prototype Burglary Simulations For Crime Reduction and Forecasting. Crime Patterns and Analysis 2(1). [download]

Book Chapters

Crooks, A.T., Malleson, N., Wise, S. and Heppenstall, A. (under review). Big Data, Agents and the City, in Schintler, L.A. and Chen, Z. (eds), Big Data for Urban and Regional Science, Springer.

Crooks, A.T., Heppenstall, A. and Malleson, N. (under review). Agent-based Modelling, in Huang, B. (ed), Comprehensive Geographic Information Systems, Elsevier.

Birkin, M. and N. Malleson (2015) Modelling and Simulation. In Halfpenny, P. and Procter, R. (Eds) Innovations in Digital Research Methods, Chapter 6. SAGE Publications Ltd. [URL]

Malleson, N., L. See, A. Evans, A. Heppenstall (2014) Optimising an Agent-Based Model to Explore the Behaviour of Simulated Burglars. Theories and Simulations of Complex Social Systems. Volume 52 of Intelligent Systems Reference Library, pp 179-204. Springer. [URL] [PDF]

Birkin, M. and N. Malleson (2014) An investigation of the sensitivity of a dynamic microsimulation model of urban neighbourhood dynamics. In Dekkers G., Keegan, M. and O’Donoghue, C. (eds) New pathways in microsimulation. Ashgate.

Malleson, N. and A. Evans (2013) Agent-Based Models to Predict Crime at Places. In G. Bruinsma and D. Weisburd (Eds) Encyclopedia of Criminology and Criminal Justice pp 41-48 . Springer. [PDF]

Malleson, N. (2013) Calibration of Simulation Models. In G. Bruinsma and D. Weisburd (Eds) Encyclopedia of Criminology and Criminal Justice pp 243 – 252 . Springer. [PDF]

Andresen, M.A. and N. Malleson (2013). Spatial heterogeneity in crime analysis. In M. Leitner (ed.) Crime Modeling and Mapping Using Geospatial Technologies. Volume 8 of Geotechnologies and the Environment. New York, NY: Springer.

N. Malleson (2012) Using Agent-Based Models to Simulate Crime. In Heppenstall, A.J.; Crooks, A.T.; See, L.M.; Batty, M. (Eds.) Agent-Based Models of Geographical Systems. Springer. [URL] [download]

Selected Conference Proceedings

Malleson, N. and M. Birkin (2014) New Insights into Individual Activity Spaces using Crowd-Sourced Big Data. In: 2014 ASE BigData/SocialCom/CyberSecurity Conference, Stanford University, May 27-31 2014. Available online: http://www.ase360.org/handle/123456789/31. [pdf] [presentation slides] [URL]

Malleson, N. and M. Birkin (2014) Generating Individual Behavioural Routines from Massive Social Data for the Simulation of Urban Dynamics. Proceedings of the European Conference on Complex Systems 2012.Springer Proceedings in Complexity 2014, pp 849-855 [pdf]

Malleson, N. and M. Birkin (2013). Estimating Individual Behaviour from Massive Social Data for An Urban Agent-Based Model. In A. Koch and P. Mandl (Eds) GeoSimulation: Modeling Social Phenomena in Spatial Context. Germany: Lit Verlag. ISBN: 978-3-643-90345-7 [download (pdf)]

Working Papers and Others

Heppenstall, A. and N. Malleson (2015). How big data and The Sims are helping us to build the cities of the future. The Conversation. Published 22 October, 2015 2.38pm BST. Available online: https://theconversation.com/how-big-data-and-the-sims-are-helping-us-to-build-the-cities-of-the-future-47292

Lovelace, R., Malleson, N., Harland, K., & Birkin, M. (2014). Geotagged tweets to inform a spatial interaction model: a case study of museums. arXiv preprint.

Birkin, M., Malleson, N., (2013) Investigating the Behaviour of Twitter Users to Construct an Individual-Level Model of Metropolitan Dynamics. National Centre for Research Methods Working Paper 05/13. University of Leeds. [pdf]

PhD Thesis

Malleson, N. (2010). Agent-Based Modelling of Burglary. School of Geography, University of Leeds, Leeds, LS2 9JT. [download]